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Abstract. The key agreement protocol are either based on some com-
putational infeasability, such as the calculus of the discrete logarithm in
[1], or on theoretical impossibility under the assumption that Alice and
Bob own specific devices such as quantum channel [2]. In this article, we
propose a new key agreement protocol called CHIMERA which requires
no specific device. This protocol is based on a generalization we propose
of the reconciliation algorithm. This protocol is proved unconditionally
secure.

1 Introduction

The security of cryptographic systems is based either on a computational in-
feasability or an a theoretical impossibility. However, some cryptographic prob-
lems have no known unconditionally secure solution. For example, the key agree-
ment problem has computational secure solutions, as the Diffie-Hellman protocol
[1], but no unconditional secure solution under the assumption that Alice and
Bob has no specific equipment such as quantum channel, deep-space radio source,
or satellite.
Our work is inspired by these protocols and uses a generalized version of an

interactive error-correcting algorithm proposed by C.H. Bennett and G. Brassard
in [2]. This algorithm, called reconciliation, fits the parameter of the quantum
channel, but is insecure for our protocol because of some properties of the se-
quences we use. The first part of this paper is a presentation of the generalization
of the reconciliation algorithm.
The next part is a presentation of CHIMERA, which is a key agreement

protocol with unconditional security. It uses information-theoretic algorithms
such as generalized reconciliation and extended Huffman coding.
In [3], U. Maurer gives a general description of key agreement protocols and

the conditions a key agreement protocol must satisfy to be secure [4],[5]. We
recall these conditions and prove that CHIMERA satisfy all this conditions if
the value of a parameter of the protocol is in a given range. Next, we propose a
particular value of this parameter in the given range to optimize the length of
the key created by CHIMERA.
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2 Generalized Reconciliation

2.1 Bennett and Brassard’s Reconciliation

The reconciliation process is, as describe in [2], an iterative algorithm which
destroy errors between two binary sequences A and B owned by Alice and Bob.
The destruction of the errors is secure even if Eve listen the insecure channel
used by Alice and Bob to perform reconciliation. The algorithm does not destroy
all errors between the two sequences in one round, but it can be repeated several
times to destroy statistically all the errors. The price to pay to obtain to identical
sequence is the sacrifice of bits of the sequences and thus, the reduction of the
length of the sequences.
Here is the algorithmic description of one round of reconciliation :
Alice and Bob cut their sequences A and B into subsequences of length k. For

each sub-sequence (Ai, . . . , Ai+k−1) from A and (Bi, . . . , Bi+k−1) from B, they
send each other (on the public insecure channel) the parity of their sub-sequence.

– If the parity of the sub-sequence (Ai, . . . , Ai+k−1) differs from the parity of
the sub-sequence (Bi, . . . , Bi+k−1), Alice and Bob destroy their respective
sub-sequences.

– Else Alice and Bob destroy respectively Ai+k−1 and Bi+k−1, and keep
(Ai, . . . , Ai+k−2) and (Bi, . . . , Bi+k−2).

The principle is simple : if the parities differ, then the sub-sequences differ.
if Alice and bob destroy these sub-sequences, they destroy (at least) one error
between the two sequences.
On the other hand, if the parities are equal. This does not mean that the

two sequences are equal. However Eve knows one bit of information about the
subsequence : so, Alice and Bob destroy one bit from their subsequence.
Obviously, the reconciliation works only if the sequences A abd b are close

enough, and is secure only if Eve has no information about A and B before the
reconciliation. For example, if she knows with certainty the value of one bit from
A and B and if Alice and Bob use sub-sequences of length two, she learns from
the parities of the sequences the whole sequences and so the bit kept if the parity
are equals.

2.2 Generalized Reconciliation

Sometimes, in particular in CHIMERA, the parity of a sub-sequence reveals
more information than the entropy of one bit of the subsequence. This happens,
for example, when p(Ai = 0) < p(Ai = 1).
The generalized reconciliation algorithm REC(k,n), which is as follows, let

Alice and Bob sacrifice n symbols (instead of only one) of their sub-sequences
of length k when the parities are equals.
Alice and Bob cut their sequences A and B into subsequences of length k. For

each sub-sequence (Ai, . . . , Ai+k−1) from A and (Bi, . . . , Bi+k−1) from B, they
send each other (on the public insecure channel) the parity of their sub-sequence.
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– If the parity of the sub-sequence (Ai, . . . , Ai+k−1) differs from the parity of
the sub-sequence (Bi, . . . , Bi+k−1), Alice and Bob destroy their respective
sub-sequences.

– Else Alice and Bob destroy respectively Ai+k−n and Bi+k−n, and keep
(Ai, . . . , Ai+k−n−1) and (Bi, . . . , Bi+k−n−1).

The principle is the same than in Bennett and Brassard reconciliation R(k,1)
: if the parities differs,then the sub-sequence contain errors, so Alice and Bob
destroy the sub-sequences. Otherwise, Alice and Bob destroy more information
than the information revealed by the parities.
The generalization of the reconciliation algorithm is very useful in our pro-

tocol, called CHIMERA, which uses REC(3,2). Actually, in this protocol the
sequences are biased but the entropy of two bits is always greater than the
entropy of the parity of three bits. This property is proved in the section (7).

3 Presentation of CHIMERA

The CHIMERA is a key agreement protocol. we present it with some parame-
ters which are optimal and insure its security. The choice of the values used in
CHIMERA is explain in the study of the protocol which follows this presentation.
The following protocol allows Alice and Bob to build a secret common quan-

tity of length 128 bits.

– Alice builds a binary sequence A[0] with the following properties :
• |A[0]| = 2000000
• ∀i p(A[0]

i = 1) = pb = 3
16

– Bob builds a binary sequence B[0] with the following properties :
• |B[0]| = 2000000
• ∀i p(B[0]

i = 1) = pb = 3
16

– Alice and Bob repeat 6 times the following reconciliation algorithm REC(3,2)
on their respective sequences (We note A[k] and B[k] Alice and Bob’s se-
quences after k rounds of reconciliation).

l=0
forall i such as (i < |A[k]| − 2 and i mod 3 = 0)

if (
⊕2

j=0 A
[k]
i+j) =

⊕2
j=0 B

[k]
i+j)) then

A
[k+1]
l ← A

[k]
i

B
[k+1]
l ← B

[k]
i

l← l + 1
end if

end forall

– Alice compresses the sequence A[6] with the extended Huffman code H using
11-tuples as symbols of the language. The resulting sequence is the key S.
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– Bob compresses the sequence B[6] with the extended Huffman code H using
11-tuples as symbols of the language. The resulting sequence is the key S′.

Alice and Bob have the same quantity S = S′ of length 128.

4 Properties of Key Agreement Protocols

In [3], U. Maurer gives the properties a key agreement have to satisfy. These
properties come from [4] and [5]. They are conditions of soundness and security.
Considering that Eve is passive, a key agreement protocol which creates

binary sequences S and S′ by exchanging between Alice and Bob t messages
C1, . . . , Ct must satisfy the three conditions

– P [S �= S′] ≈ 0 : Alice and bob must obtain with a very high probability the
same sequence.

– H(S) ≈ |S| : the key must be very close to uniformly distributed.
– I(S;CtZ) ≈ 0 : Eve has no information about S, considering her initial
knowledge Z and her eavesdropping of the insecure channel.

Moreover, the goal of the key-agreement is to make the length of the key S as
long as possible.
The CHIMERA satisfied each of these properties. The proof that each prop-

erty is satisfied is given in the three following sections of this paper. For each
proof, we assume that the bias pb of the initial sequences A[0] and B[0] is in the
range [0 : 1

2 ), and we search the conditions on this parameter the CHIMERA
have to respect to work and be sure. We also assume the reconciliation needs
r round to create identical sequences and the extended Huffman code uses n-
tuples.
Then, under the conditions on pb obtained in each proof we explain the choice

of the values pb = 3
16 , r = 6 and n = 11.

5 Proof of the Property P [S �= S′] ≈ 0

The proof of the property P [S �= S′] ≈ 0 is based on the study of the distance
evolution between Alice’s sequence A[i] and Bob’s sequence B[i] after i rounds
of reconciliation.

5.1 Definition : Normalized Distance

The normalized distance dN (A, B) between to sequences of bits A and B is
defined as the ration between Hamming distance dH(A, B) and the length |A|
of the sequences.

dN (A, B) =
dH(A, B)
|A| . (1)
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5.2 Initial Normalized Distance dN(A[0], B[0])

Let pb be the biased probability of the random generators. The initial normalized
distance is a function of pb. The following table presents the four possible values
of the couple (A[0]

i , B
[0]
i ) with their occurrence probability.

Table 1. Possible values of (A[0]
i , B

[0]
i ) with occurence probability.

A
[0]
i B

[0]
i p(A[0]

i , B
[0]
i )

0 0 (1− pb)2

1 1 p2
b

0 1 pb(1− pb)
1 0 pb(1− pb)

In the two last cases A
[0]
i and B

[0]
i differs, so p(A[0]

i �= B
[0]
i ) = 2pb(1−pb). This

result can be extended to the whole sequences to obtain the average Hamming
distance dH(A[0], B[0]) = |A[0]|2pb(1 − pb). So the initial normalized distance
between A[0] and B[0] is :

dN (A[0], B[0]) =
dH(A[0], B[0])
|A[0]| = 2pb(1− pb). (2)

In CHIMERA, we set pb ∈ [0 : 1
2 ). So we have the following range for the

initial normalized distance between S and S′ which is a function of the bias of
the random generators used to build A[0] and B[0] :

dN (A[0], B[0]) ∈ [0 : 1
2
). (3)

5.3 Evolution of the Normalized Distance dN(A[k], B[k])

Let dN (A[k], B[k]) be the normalized distance between A[k] and B[k] after
k rounds of reconciliation with the algorithm REC(3, 2). The following ta-
ble presents the 32 possible values of the two 3-tuples (A[k]

i , A
[k]
i+1, A

[k]
i+2) and

(B[k]
i , B

[k]
i+1, B

[k]
i+2) with their occurrence probability when the bits A

[k]
i and B

[k]
i

are kept (i is a multiple of 3).
The 16 first cases give A

[k]
i = B

[k]
i , which means that the reconciliation

REC3 works and the distance reduces. At the opposite, the 16 last cases gives
A

[k]
i �= B

[k]
i , the reconciliation REC(3,2) fails and the distance increases.

The normalized distance dN (A[k+1], B[k+1]) after one more round of reconcil-
iation REC(3,2) is a function of dN (A[k], B[k]). It is given by the ratio between
the probability of the 16 last cases and the probability of the 32 cases ( we set
dN = dN (A[k], B[k]) ) :

dN (A[k+1], B[k+1]) =
2(1− dN )d2N

3(1− dN )d2N + (1− dN )3
. (4)
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Table 2. Possibles values of (A[k]
i , A

[k]
i+1, A

[k]
i+2, B

[k]
i , B

[k]
i+1, B

[k]
i+2) with occurrence prob-

ability

A
[k]
i A

[k]
i+1 A

[k]
i+2 B

[k]
i B

[k]
i+1 B

[k]
i+2 p(A[k]

i , A
[k]
i+1, A

[k]
i+2, B

[k]
i , B

[k]
i+1, B

[k]
i+2)

0 0 0 0 0 0 (1− dN (A[k], B[k]))3

0 0 0 0 1 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 0 1 0 0 1 (1− dN (A[k], B[k]))3

0 0 1 0 1 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 0 0 0 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 0 0 1 0 (1− dN (A[k], B[k]))3

0 1 1 0 0 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 1 0 1 1 (1− dN (A[k], B[k]))3

1 0 0 1 0 0 (1− dN (A[k], B[k]))3

1 0 0 1 1 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 0 1 1 0 1 (1− dN (A[k], B[k]))3

1 0 1 1 1 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 0 1 0 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 0 1 1 0 (1− dN (A[k], B[k]))3

1 1 1 1 0 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 1 1 1 1 (1− dN (A[k], B[k]))3

0 0 0 1 0 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 0 0 1 1 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 0 1 1 0 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 0 1 1 1 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 0 1 0 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 0 1 1 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 1 1 0 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

0 1 1 1 1 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 0 0 0 0 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 0 0 0 1 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 0 1 0 0 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 0 1 0 1 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 0 0 0 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 0 0 1 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 1 0 0 1 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

1 1 1 0 1 0 (1− dN (A[k], B[k]))(dN (A[k], B[k]))2

5.4 Limit of the Normalized Distance dN(A[k], B[k])

Proving that ∀dN (A[0], B[0) ∈ [0 : 1
2 ), limr→+∞ dN (A[k], B[k]) = 0 is equivalent

to prove P [S �= S′] ≈ 0. We do not consider the last computation of the protocol
(the Huffman coding of the sequences S and S′) because Alice and Bob obtain
the same sequence after this compression if they have the same sequence before
this compression. So we only have to prove the normalized distance between A[r]
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and B[r] to be equal to zero before the Huffman coding, i.e after the reconciliation
rounds.
The limits of dN (A[k], B[k]) are the roots of the equation

d =
2d2

3(1− d)2 + (1− d)3
. (5)

This equation can be re-write as :

d(1− d)(d− 1
2
)2 = 0. (6)

Obviously, the roots of this equation,and so the possible limits of the normalize
distance between A[k] and B[k] after k rounds of reconciliation, are {0, 1

2 , 1}.

lim
k→+∞

d
[k]
N (S, S′) ∈ {0, 1

2
, 1}. (7)

Let us consider now the case dN (A[0], B[0) ∈ [0 : 1
2 ) seen in (3) which is en-

countered in CHIMERA and study the limit of the normalized distance between
A[k] and B[k] for this initial range of value. In this range, the next inequality is
true :

∀d[0]N (S, S′) ∈ [0 : 1
2
),

2d2

3(1− d)2 + (1− d)3
< d. (8)

So, re-writing the equation with the normalized distance evolution function
(4), we have:

∀d[0]N (S, S′) ∈ [0 : 1
2
), dN (A[k+1], B[k+1]) < dN (A[k], B[k]). (9)

For dN (A[0], B[0]) ∈ [0 : 1
2 ), the sequence {dN (A[k+1], B[k+1])}k≥0 is decreas-

ing and bounded. So it is convergent and its limit is 0.

∀dN (A[0], B[0]) ∈ [0 : 1
2
), lim

k→+∞
dN (A[k], B[k]) = 0. (10)

So after enough rounds, noted r, of reconciliation the normalized distance
between A[k] and B[k] becomes as close to zero as wanted. This means that the
sequences are equal, with a very high probability.

∀dN (A[0], B[0]) ∈ [0 : 1
2
),∀ε > 0,∃r, dN (A[r], B[r]) < ε. (11)

Choosing ε very close to 0, we can write :

P [A[r]= B[r]] ≈ 0. (12)

Obviously, the Huffman coding H does not change this result. We note
H(A[r]) and H(B[r]), the Huffman coding of A[r] and B[r] respectively. So,

P [H(A[r])= H(B[r])] ≈ 0. (13)

As defined in CHIMERA, the sequences H(A[r]) and H(B[r]) are the keys
and can be noted, in accordance with [3], S and S′. So, we have :

P [S �= S′] ≈ 0. (14)
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6 Proof of the Property |S| ≈ H(S)

The proof of the property |S| ≈ H(S) is based on the evaluation of the normal-
ized weight of the sequences A[r] and B[r] and on a property of the Huffman
code.

6.1 Definition : Normalized Weight

The normalized weight ωN (A) of the binary sequence A is defined as the ratio
between Hamming weight ωH(A) and the length |A|.

ωN (A) =
ωH(A)
|A| . (15)

Of course, the initial normalized weight of the sequences A[0] and B[0] is equal
to pb.

6.2 Residual Normalized Weight

We consider the residual normalized weight of the sequences A[r] and B[r], i.e.
when the condition (P [S �= S′] = 0) is satisfied. We note pk the probability of
keeping a bit after r rounds of reconciliation. This probability, we will not eval-
uate now, is function of the number of reconciliation rounds (each round divide
by three, at least, the length of the sequences) and of the normalized distance
of the sequences for each round of reconciliation (the closest the sequences are,
the highest is the probability to keep a given bit).
As we keep only identical bits and sacrifice a certain amount of bits for

security, the following table presents the two values the ith bit of A[r] and B[r]

can have, with the probability associated to each case.

Table 3. Possibles values of A
[r]
i and B

[r]
i with occurrence probability

A
[r]
i B

[r]
i p(A[r]

i , B
[r]
i )

0 0 (1− pb)2pk

1 1 p2
bpk

Obviously, the normalized weight of A[r] (and B[r]) at the end of the recon-
ciliation is :

ωN (A[r]) =
p2bpk

(1− pb)2pk + p2bpk
=

p2b
(1− pb)2 + p2b

. (16)

This result is validated by simulations as one can see in the following graph
representing ωN (A[r]) as a function of pb :
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 theoretical

Fig. 1. This graph shows ωN (A[r] as a function of pb. The curve is given by the theory.
The dots are simulation results

Note that for pb > 1
4 , the simulation results are noisy because the residual

length of the sequence becomes too small. So, we will avoid this range of value
for the bias of the random generators used to build Alice and Bob’s sequences.

6.3 Entropy of H(A[r])

As ωN (A[r]) < 1
2 , the entropy of A[r] is not maximal [6]. However, the last stage

of the protocol is the compression of the sequences with an extended Huffman
code. It is well known that using big t-tuples as the symbols of the language
improves the compression ratio. With big enough t-tuples, the compression ratio
is near of the entropy of the sequence. Noting H, the extended Huffman code,
we have :

|H(A[r])| ≈ H(H(A[r])). (17)

As H(A[r]) is the sequence S, we can rewrite the preceding equation :

H(S) ≈ |S|. (18)

7 Proof of the Property I(S;CtZ) ≈ 0

The proof of the property I(S;CtZ) ≈ 0 is based on the comparison of the
amount of information revealed and sacrificed by the reconciliation algorithm.
We will only study the cases in which bits are kept : when the bits are destroyed
because they are different, the information that Eve can gather is useless.
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Moreover, as Eve has no information about A[0] and B[0], we can forget Z
and just prove that

I(S;Ct) ≈ 0. (19)

7.1 Information Sacrificed by the Reconciliation

Let us consider the reconciliation of the 3-tuples (A[k]
i , A

[k]
i+1, A

[k]
i+2) from Alice’s

sequence and (B[k]
i , B

[k]
i+1, B

[k]
i+2) from Bob’s sequence (i is a multiple of 3). When

for a given 3-tuples one bit is kept, then 2 bits are destroyed. Moreover, the
sacrificed bits are independent from each other. So, the amount of information
sacrificed is

Hs = 2H(ωN (A[k]). (20)

7.2 Information Revealed by the Reconciliation

Now, let us consider the information revealed by the reconciliation, i.e. the parity
of the 3-tuple (A[k]

i , A
[k]
i+1, A

[k]
i+2):

H(C2k+1
i ) = H(

2⊕

j=0

A
[k]
i+j). (21)

The following table gives the probability of incidence of each case :

Table 4. Possible values of (A[k]
i , A

[k]
i+1, A

[k]
i+2) with occurence probability.

A
[k]
i A

[k]
i+1 A

[k]
i+2)

⊕2
j=0 A

[k]
i+j p(A[k]

i , A
[k]
i+1, A

[k]
i+2)

0 0 0 0 (1− ωN (A[k]))3

0 1 1 0 (1− ωN (A[k]))ωN (A[k])2

1 0 1 0 (1− ωN (A[k]))ωN (A[k])2

1 1 0 0 (1− ωN (A[k]))ωN (A[k])2

1 0 0 1 (1− ωN (A[k]))2ωN (A[k])
0 1 0 1 (1− ωN (A[k]))2ωN (A[k])
0 0 1 1 (1− ωN (A[k]))2ωN (A[k])
1 1 1 1 ωN (A[k])3

From the four last cases, we have :

ωN (
j≤2⊕

j=0

A
[k]
i+j) = 3(1− ωN (A[k]))2ωN (A[k]) + (ωN (A[k]))3. (22)

Which give us, the entropy of the parity :

H(
j≤2⊕

j=0

A
[k]
i+j) = H(3(1− ωN (A[k]))2ωN (A[k]) + (ωN (A[k]))3). (23)
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So,

H(C2k+1
i ) = H(3(1− ωN (A[k]))2ωN (A[k]) + (ωN (A[k]))3). (24)

7.3 Comparison between Hs and H(C2k+1
i )

Obviously, we want th amount of information sacrificed to be greater than the
amount of information revealed :

Hs ≥ H(C2k+1
i ). (25)

With (20) and (24), it becomes

2H(ωN (A[k])) ≥ H(3(1− ωN (A[k]))2ωN (A[k]) + (ωN (A[k]))3). (26)

The following graph shows H(C2k+1) and Hs as functions of pb.

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 Hs
 H(C^2k+1)

Fig. 2. This graph shows H(C2k+1) and Hs as functions of pb. For pb > 1
20 , the amount

of information revealed is lesser than the amount of information sacrificed

This inequality is true for ωN (A[k]) ∈ [ 120 : 1
2 ]. To insure the security of the

protocol, the inequality must be true for each round of the reconciliation :

∀k ≤ rωN (A[k]) ∈ [ 1
20
:
1
2
]. (27)
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As {ωN (A[k])}0≤k≤r is decreasing and ωN (A[0]) ≤ 1
2 , we just have to prove that

the normalized weight of the residual sequence A[r] after the reconciliation is
greater than 1

20

ωN (A[r]) ≥ 1
20

. (28)

Using (16), this inequality becomes

p2b
(1− pb)2 + p2b

≥ 1
20

. (29)

So,the reconciliation algorithm REC(3,2) is secure if

pb ≥
√
19− 1
18

. (30)

It means that eve gather no information from the communications Ct between
Alice and Bob if the initial normalized weight of the sequences is in the range
[
√
19−1
18 : 1

2 ]. Under this condition, we have :

I(S;Ct) ≈ 0. (31)

Moreover, as Eve has no initial sequence Z, we can write :

I(S;CtZ) ≈ 0. (32)

8 Choice of the Parameter pb

8.1 Constraints on the Choice of pb

The bias of the random generators used to build A[0] and B[0] is the most impor-
tant parameter of CHIMERA, as the security and the efficiency of the protocol
depend on the value of pb.
As seen in the proof of the property |S| ≈ H(S), the bias pb should not be

greater than 1
4 to be efficient. Moreover, the proof of the property I(S;CtZ) ≈ 0

stands that CHIMERA is safe if pb is greater than
√
19−1
18 . So, the bias of the

random generators must be choose in the range [
√
19−1
18 : 1

4 ].

8.2 Simulation Results

We have made simulations with sequences A[0] and B[0] of length 2 · 108 bits.
The bias of the random generators is set in the range [0 : 1

2 ) (although only the
range [

√
19−1
18 : 1

4 ] is really useful in CHIMERA ) and the reconciliation round is
repeated while Alice and Bob’s sequences are different.
Then, we have consider the residual length of the sequences weighted by the

entropy of the normalized weight of the sequences, i.e. the length of the sequences
compressed with an optimal compression code (like the extended Huffman code).
The results of these simulations are presented in the following graph. The x-axis
is the bias pb and the y-axis is the residual length |S|.
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Fig. 3. This graph shows the residual length |S| as a function of pb. The value pb we
propose is 0.1875

As stands in [3], the goal is to make |S| as large as possible. In the range
[
√
19−1
18 : 1

4 ], we have two clouds of points ; the first one, located in [
√
19−1
18 :≈

0.22], re-groups the results of the simulations with six rounds of reconciliation.
The other cloud of points re-groups the results of the simulations with seven
rounds of reconciliation.
As one can see, in the range [

√
19−1
18 :≈ 0.22] the residual length |S| is greater

than the length |S| in the range [≈ 0.22 : 1
4 ]. Moreover, in the first range six

rounds of reconciliation, instead of seven rounds, are needed. So we have to chose
pb ∈ [

√
19−1
18 :≈ 0.22].

Moreover, as the first cloud decreases with pb, the bias of the random gener-
ator should be close to

√
19−1
18 . For implementation convenience, we propose to

use :
pb =

3
16

. (33)

8.3 Creation of a Biased Random Generator for pb = 3
16

The bias pb can be easily obtain with a combination of non-biased random gen-
erators. For example, considering the outputs a, b, c and d of four non-biased
random generators, the logical combination

p = a · b · c+ a · b · d1. (34)
1 · denotes the logical operator AND, + denotes the logical operator OR
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is a biased random generator of bias pb = 3
16 .

A such simple construction can be implement in any environment and let
Alice and Bob build their initial sequences with very light calculus. As the other
parts of the protocol need very light calculations (XOR and Huffman coding
with pre-calculated trees), our intend is to make the creation of the sequence as
easy as the rest of the protocol.

9 Parameter of the Extended Huffman Code

The efficiency of the Huffman code depends on the number of symbols of the
language on which is based the Huffman tree. For example if only two symbols
appears, whatever their frequencies, the Huffman tree will be a simple root. But,
if you consider n-tuples of symbols as the symbols of a language, the Huffman
code become more and more efficient as n increases. The compression ratio is,
of course, bounded by the entropy of the language.
For the last stage of CHIMERA, we have to find a size of the n-tuples such

as a 128 bit key created with CHIMERA as at least 127 bits of entropy. The
method to find n is simple : we calculate the minimum-redundancy code for an
increasing n, with the algorithm presented in [7] until we found a compression
ration Rn such as :

128 · H(ωN (A[6]))
Rn

≥ 127. (35)

The following table present, for a given n, the compression ratio of the
minimal-redundancy code obtained with n-tuples as symbols, and the entropy
of a 128 bits key created with this minimal-redundancy code:

Table 5. Compression ratio and entropy of the key for a given length of the extended
Huffman code.

n Rn H(S)
1 1 36.9
2 0.5745 64.3
3 0.4347 85.1
4 0.3685 100.2
5 0.3378 109.4
6 0.3179 116.3
7 0.3056 121.0
8 0.3007 122.9
9 0.2971 124.4
10 0.2936 125.8
11 0.2905 127.2

The compression ratio for n = 11 is close enough to entropy of H(A[6]) ≈
0.28878 to obtain a key with an entropy greater than 127.
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Considering bigger n-tuples, one has a better approximation of the entropy.
Nevertheless, the Huffman tree need more memory. with 11-tuples, the compres-
sion table (i.e. the Huffman tree) needs

10 Average Length of the Keys

The length of the keys can be easily calculated knowing the length |A[r]|. As we
need empirically 6 rounds of reconciliations to have P (S �= S′) ≈ 0, we set r = 6
for pb = 3

16 .

10.1 Residual Length |A[6]|
The amount of bits kept after a reconciliation round is a function of the nor-
malized distance between the sequences : the closer the sequences are, the fewer
3-tuples are destroyed.
As one bit is kept when the 3-tuples have the same parity, and none if the par-

ities differ, noting R(dN (A[k], B[k]) = A[k+1]

A[k] the reduction factor of the sequence,
we have (with i multiple of 3):

R(dN (A[k], B[k])) =
P ((

⊕2
j=0 A

[k]
i+j) = (

⊕2
j=0 B

[k]
i+j))

3
. (36)

Considering the 3-tuples with the same parity, the table in the section (5.3)
gives, setting dN = dN (A[k], B[k]) :

R(dN ) =
(1− dN )3 + 3(1− dN )d2N

3
. (37)

As the reconciliation is an iterative process, the length |A[6]| is reduced six
times, with a ratio depending on the normalized distance between Alice and
Bob’s before each round of reconciliation REC(3,2). so, the length |A[6]| is :

|A[6]| = |A[0]|
5∏

i=0

R(dN (A[k], B[k])). (38)

Of course, dN (A[k], B[k]) is given for each iteration by (4).

10.2 Length of the Key S

At the end of the reconciliation, Alice and Bob own respectively the sequences
A[6] and B[6], of length k = |A[6]| and of normalized weight ωN (A[6]). The
normalized weight is given by (16) :

ωN (A[6]) =
(ωN (A[0]))2

(1− ωN (A[0]))2 + (ωN (A[0]))2
. (39)
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These sequences equal with a very high probability are compressed at the
end of the protocol with an extended Huffman code which compression ratio is
very close to the entropy of the sequence. Thus, the length of the key is :

|S| = H(ωN (A[6])) · |A[6]|. (40)

From (38) and (39), we have :

|S| = H(
(ωN (A[0]))2

(1− ωN (A[0]))2 + (ωN (A[0]))2
)|A[0]|

5∏

i=0

R(dN (A[k], B[k])). (41)

With the extended Huffman code of length n = 11, the practical length of
the keys is :

|S| = R11|A[0]|
5∏

i=0

R(dN (A[k], B[k])). (42)

The evaluation of this formula gives:

|S| ≈ 6.37 · 10−5|A[0]|. (43)

So Alice and Bob can create a common key of 128 bits with initial sequences
of length 2000000 bits.

11 Conclusion

The main points addressed in this paper are :

– A generalized definition of reconciliation has been proposed to let the users
destroy more than one symbol of their sequences. The generalization is useful
when the entropy of the reconciled sequences is not maximal.

– A unconditionally secure key agreement protocol, called CHIMERA, has
been proposed. Its soundness and its security has been proved. The
CHIMERA uses no specific devices unlike other unconditionally secure key
agreement protocol.

– Convenient parameters has been given for practical implementation of the
CHIMERA.
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