
The Formal Design of Protection Systems Ben Mankin
University of Bath

ben.mankin@anarres.org

Introduction

Security is increasingly a fundamental requirement of business and industry, for practical, legal and com-
petitive reasons. However, security is not a fundamental requirement in the design of the current generation
of computer systems. Vulnerabilities appear and are exploited, and even the introduction of excessively
restrictive security systems has done little to reduce the impact of such exploits.

The object of our work is to produce designs for correct, flexible security systems to underpin the next
generation of systems such that security is handled in a consistent, robust and provably correct manner
throughout any computer system. Our work is proof-oriented, and we give absolute security and computa-
tional results for any systems we produce. We construct systems having all of the following properties:

� Guaranteed conformance to a security policy.
� Secure delegation of security system administration.
� Distribution over a network without central authority.
� Human-oriented justification of all access decisions.
� Security is maintained outside application code.
� Accounting and auditing information is available on demand.

Our increased understanding of protection systems also allows us to perform a limited security analysis of
many legacy systems, and previously unknown vulnerabilities can sometimes be identified.

Overview

Many of us understand some of the mechanics of identifying vulnerabilities in a computer security system. These holes
tend to be implementation bugs, and are frequently found in application software, rather than in the operating system
itself. But we do not understand why trivial bugs can become such major vulnerabilities. Where do vulnerabilities come
from? What aspects of protection system design allow so many trivial misfeatures to become major problems?

Many of us also have some knowledge of how to create a relatively secure system. Such systems tend to be mini-
mally permissive, frequently to an extent that they become impractical. Modification of such a system by an untrusted
user would be unthinkable. But even the less “secured” systems we use for day-to-day work tend to disallow almost
entirely the transport or reassignment of permissions, because there is a general lack of understanding of the dynamics
of permissions.

Our lack of understanding of all aspects of protection systems has left us unable to answer a great many questions.
� “What undiscovered vulnerabilities exist in a system?”
� “How can we design a system in which minor implementation errors in application software do not affect overall

system security?”
� “How do we balance security against permissiveness?”
The questions proposed above have arisen in our limited experience with protection systems. There are many more

open questions which have not yet arisen in practice, and all these questions can be answered as a consequence of a
formal analysis of the design of protection systems.

We can build a system which automatically identifies vulnerabilities within itself.
This is not entirely new; intrusion detection systems have limited functionality for identifying vulnerabilities. How-

ever, they are concerned only with identifying the occurrence of particular vulnerabilities based on a previous experien-
tial analysis of a sample system configuration.

If we can efficiently analyse any configuration of a particular protection system, then the system can accurately
report the consequences of any proposed configuration change before it is enacted. This suggested analysis is generally
impossible. However, there exist protection systems for which it is possible in linear time and space, and we exhibit a
selection of these systems.

We can build a system where mistakes in application code do not create security vulnerabilities.
Security is an implicit requirement above and beyond any functional specification. If the underlying system does

not maintain security information for input data, then the application must maintain this information lest untrusted input
cause a program to attempt a protected operation with a malicious outcome. Overall system security must be considered
in every line of application code, thus making the system prone to security errors.

We can design a system architecture such that security information is automatically maintained by the system. This
information will be considered by the decision processes of the protection system when necessary. In such a system,
secure programs may easily be constructed by a programmer who is entirely unaware of the concerns of security. Security
then becomes solely the domain of the protection system.

1



We can build a secure, distributed protection system without central administration.
It is a requirement in any large organisation that protection system administration be delegated. However, the ap-

parent tradeoff between flexibility and security in protection system design has always been biased towards the side of
security, and consequently against this kind of flexibility.

We can build a system within which it is safe to delegate the administration of the system to the users, to the extent
that the role for the central administrator in handling permissions is abolished. We can even establish such a system over
a cross-organisational network such that each local administrator or user can administrate rights within his own systems,
yet the systems work securely together as a network under a single protection system.

We can build practical, expressive systems with these properties.
Nothing is lost in order to make these surprising gains. We simply achieve an understanding of what properties are

held by various types of protection system. Instead of increasing security by making a system increasingly restrictive,
we create security by design, by analysis and by understanding the mechanisms of protection. There exist many systems
with desirable properties, and we may choose freely to use any of these systems. Unsurprisingly, most of the protection
systems currently in use do not fall into any of these categories.

We do not prove any implementation correct.
It is important to make the distinction between correctness of design and correctness of implementation. Even given

a correct design, any implementation containing an error may be insecure, but such an error may be corrected to create
a secure system. A system with a flawed design may not necessarily be corrected; it must often be redesigned from
scratch. Our work includes the design, example algorithms and complexity results for these algorithms, but does not
include any technique for proving an implementation correct.

There is secure, and there is insecure. There is no “probably”.
A system which can be broken is not secure. A system which cannot be broken is secure. A system which we do not

yet know how to break, but has not been formally proven secure, is not to be considered secure. The common phrase,
“more secure” must be interpreted as, “more likely to be secure”. We are not statisticians and so we will not use such
phraseology.

Applications

Practical applications exist for our work in many industries, including but not limited to those where data integrity,
privacy or data protection are paramount.

Financial Services: Security information maintained at operating system and network level would make correct
accounting information available to any financial services organisation processing electronic transactions. It would be
impossible for an attacker to cause a fraudulent transfer of funds since his actions would be accounted for, and hence
detected.

Data Protection: An organisation dealing with patient records or customer data would benefit from a system which
guaranteed compliance with the data protection act and related legislation. It would be possible for the applications
developers to write arbitrarily permissive groupware applications in the knowledge that the underlying operating system
and network protocols would prevent any undesirable leakage of information.

Agents and Grid Computing: The legal status of software agents can be established only when their provenance
and integrity is assured. As basic access control enabled timesharing, a network oriented security system design can
enable network sharing, creating an environment in which agents can safely operate.

Total accountability does not immediately cause loss of privacy. Our work identifies many circumstances where
security information should be partially or fully discarded. In addition to our applications, we look at the relationship
between security, privacy, anonymity and repudiation, and show that these concerns are not mutually exclusive.

Conclusions

The designs proposed by our research solve a large part of what has been termed the security problem. This problem has
arisen largely through a lack of understanding of the nature of vulnerability, responsibility and policy. As a consequence
of this, the current generation of security systems are after-market additions which attempt to compensate for poor design
with excessive restriction on the user.

With our improved understanding, we have designed a system to satisfy not only the functional requirements of
security, but also the computational requirements of protection system analysis, the social requirements of privacy and
many practical requirements proposed in this document and elsewhere. Any system which correctly answers the security
problem for a given set of requirements may enable a vast range of new technologies. We are confident that further
research will extend our ability to construct and use protection systems to satisfy new requirements as they arise.

Ben Mankin
�������

October 2003

2


