

This slide intentionally left blank.

How to get fired
with the Java type system.

Shevek
shevek@anarres.org

Tricks with Types

Compilers

● The job of the compiler is turn your source into
binary.

● That's all, right?

● No, it also helps you write correct code.

● The type system is the most significant tool in the
arsenal.

Java

● Java is simple.
● Java does not allow language extensions.
● It has primitive types and classes.
● It has single inheritance and interfaces.

● So what can we do?

● It doesn't get interesting yet.

Java 1.5

● Parameterized types.
● List<X>

public interface Foo<X> {
public void add(X value);
public X get(int index);

}

Foo<String> x = ...;

x.add(“bar”); // OK

x.add(5); // Not OK

String value = x.get(4); // Note, no cast.

● Now the compiler can check our code.

Where Can We Use Parameters?

● More places than you think!

public class Foo<X> { // Here, we all know.

@Override
public <T> T add(Foo<T> remote, T value) { // Also, here!

...
}

}

● Now we can say “These two things are of the
same type.” without knowing the type!

● What happens underneath?

Java 1.5 Bytecode

public interface Foo<X> {
public void add(X value); // It's an Object.

}

public class MyFoo implements Foo<String> {
@Override
public void add(String value) { // This can't override (Object)

...
}

}

public class MyFoo implements Foo<String> {

public void add(String value) {
...

}

@Override
public synthetic void add(Object value) {// So this does.

add((String)value);
}

}

Bounded Parameters

● We can give required properties of the
parameter X.

public interface Foo<X extends Bar> {
public void add(X value) {

// Now we can use the properties of Bar, but not X.
}

}

public class MyBar extends Bar { }
public class YourBar extends Bar { }

Foo<MyBar> // Valid
Foo<YourBar> // Valid
Foo<String> // Invalid

More Power to Type Bounds

● Help us write correct code.
public interface MyContainer<X> {

public List<X> void getValues();
}

MyContainer<String> x = …;
List<String> l = x.getValues();
x.add(“foo”);

● Did we just modify an internal data structure?
● Can the compiler help us find out?

public interface MyContainer<X> {
public List<? extends X> void getValues();

}

MyContainer<String> x = …;
List<? extends String> l = x.getValues();
x.add(“foo”); // Illegal – can't create a value of type unknown.

Even More Power to Type Bounds

● We did read-only. Can we do write-only?
public interface MyContainer<X> {

public List<? super X> void getTarget();
}

MyContainer<String> x = …;
List<String> l = x.getTarget();
x.add(“foo”); // We're allowed to add Strings, or anything below.
x.get(...); // Illegal, since we don't know the return type.

What Does a Bound Tell Us?

● It doesn't tell us the type, just the properties.
● We can have multiple bounds!

public interface MyContainer {
public <T extends JComponent & MyPanel> void add(T panel) {

// Now we can use the properties of JComponent
// and MyPanel.

}
}

● Now, we specified multiple behaviours in a
language with only single inheritance!

● I forget what bytecode it compiles here.

Types Are Powerful

● Types are the primary tool for the compiler to
prove correctness of code.

● If you used a cast, you did something wrong.

● Say what you mean, and the rest will follow.

Thank you

Guh.....? What just happened?

